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Hand-object interaction is challenging to reconstruct but important for many
applications like HCI, robotics and so on. Previous works focus on either the
hand or the object while we jointly track the hand poses, fuse the 3D object
model and reconstruct its rigid and nonrigid motions, and perform all these
tasks in real time. To achieve this, we first use a DNN to segment the hand and
object in the two input depth streams and predict the current hand pose based
on the previous poses by a pre-trained LSTM network. With this information,
a unified optimization framework is proposed to jointly track the hand poses
and object motions. The optimization integrates the segmented depth maps,
the predicted motion, a spatial-temporal varying rigidity regularizer and a
real-time contact constraint. A nonrigid fusion technique is further involved
to reconstruct the object model. Experiments demonstrate that our method
can solve the ambiguity caused by heavy occlusions between hand and
object, and generate accurate results for various objects and interacting
motions.
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1 INTRODUCTION
Reconstructing 3D motions of human hands is an important topic
in computer vision and graphics due to its numerous applications
in Human-Computer Interaction (HCI), robotics, rehabilitation, be-
havior analysis, virtual and augmented reality, and so on. There are
many works focusing on the tracking of isolated hands, which is
useful for a few applications like gesture recognition and control.
However, human hands are majorly used for interacting with the en-
vironment or manipulating objects. Comparing with isolated hands,
the reconstruction of interacting motions is more eagerly required.
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Fig. 1. Real-time reconstruction of hand-object interactions. The top two
figures indicate the fusion of the object geometry from incomplete to com-
plete. The bottom two figures show the nonrigid deformation and rigid
motion of the object caused by interactions. More results are shown in the
result section and the accompanying video.

In literature, besides pure hand tracking [Han et al. 2018; Taylor
et al. 2016; Tkach et al. 2017], there are many works focusing on
hand-object interactions. Some works assume known object shape
and majorly focus on the interacting motions of hands [Ballan et al.
2012; Hamer et al. 2009; Kyriazis and Argyros 2013, 2014; Oikono-
midis et al. 2011; Sridhar et al. 2016]. These techniques need to
pre-model the objects and do not allow shape changes of objects.
Recently, some works can handle objects with articulated motions
[Tzionas et al. 2016] or even nonrigid motions [Petit et al. 2018;
Tsoli and Argyros 2018]. To solve the object motions, these tech-
niques require offline processing and initial templates of the objects,
which limits their applications in reality. Techniques for in hand
reconstruction aim to reconstruct the shape of in hand objects and
thus do not require templates, but they only handle static shapes,
not motions of objects. In general, there is no existing work that
simultaneously reconstructs the 3D motion of human hands and
the shapes of the manipulated objects as well as their motions (rigid
or nonrigid), not to mention achieving all of them in real time.
There are some key challenges for the aforementioned full re-

construction of hand-object interactions. Hand tracking itself is
difficult due to the ambiguity caused by complex motions, lack of
geometry/texture features and self-occlusion. When hand interacts
with objects, the ambiguity further increases due to the much heav-
ier occlusions. The same situation happens to the objects, which
may always be occluded by fingers and the palm. Furthermore, for
objects, we need to not only solve their rigid and nonrigid motions,
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but also reconstruct their static geometry models. Otherwise, we
still need to pre-scan the geometry models for the following motion
estimation. Furthermore, the geometries and motions of objects,
and the articulated hand poses form a high dimensional solution
space, which requires adequate and efficient regularizers to solve
the ambiguity and powerful optimization algorithms to accomplish
the solving in real time.

In this paper, we propose a novel technique to solve thementioned
ambiguities and achieve the full reconstruction of hand-object in-
teractions in real time. First, we build a recording system with two
depth cameras that record interacting motions from opposite di-
rections. In this manner, we do not rely on a very heavy capture
system but still record as much information as possible. Then we
combine neural networks and generative tracking models to solve
the reconstruction problem. We first train a Deep Neural Network
(DNN) to segment hand and object from the depth input, which will
help to avoid the mutual interference between them in the following
tracking step. Then we train a Long Short Term Memory (LSTM)
network to predict the hand pose in one frame from its previous
frames. This is also important because for some interacting poses,
fingers may be totally occluded for both cameras, and this network
considers motion priors to predict a reasonable pose and thus help al-
leviate the ambiguity. In general, the neural networks extract coarse
information as much as possible by learning from data. Then the
generative model further solves the ambiguity to get the final accu-
rate reconstruction by fusing two-frame information and involving
delicately designed regularizers. Besides the aforementioned pose
prediction, we propose a rigidity regularizer with spatial-temporal
varying weights, which allows non-smooth deformations around
contact regions and also guarantees smooth deformations on the
other regions. This regularization helps to generate local nonrigid
motions and contributes to solving the loop closure problem in fus-
ing the geometry model. We also propose a contact regularizer in a
new formulation to generate more accurate and physically plausible
results. The new formulation helps to keep real-time performance.
The contributions of our technique can be summarized as follows:

• To the best of our knowledge, this is the first system that
simultaneously achieves hand tracking, object fusion and
nonrigid motion tracking for hand-object interactions. Fur-
thermore, it achieves real-time performance.

• We propose an LSTM-based predictor to predict hand poses
in a sequence and a novel interaction term to estimate more
accurate and realistic interactive motions.

• We propose a generative model to solve the reconstruction
problem by fusing the point cloud of two frames and involving
pose, object and joint pose-and-object regularizers in a unified
optimization framework.

2 RELATED WORKS
In this section, we will majorly discuss papers focusing on hand-
object interactions, which is also the topic of this paper. A compre-
hensive discussion for isolated hand tracking and two hand tracking
is not included here and can be found in [Panteleris and Argyros
2017].

2.1 Hand Tracking with Interactions
As interactions cause a lot of occlusions to both hand and objects,
some works use multiple cameras to record multi-view information
[Ballan et al. 2012; Oikonomidis et al. 2011; Wang et al. 2013]. Later,
with the development of depth sensing, a single RGB-D sensor is
used to perform hand tracking with interactions [Kyriazis and Argy-
ros 2013, 2014]. However, these works still need to know the shape
of the manipulated objects and require offline processing, which
restricts their usage in many applications. Data-driven techniques
are also proposed for this task, such as [Romero et al. 2010], which
uses database searching to find output hand poses. As the size of
the database is limited, complex hand-object interactions cannot be
correctly reconstructed. Segmentation is also useful for hand pose
estimation with interactions. As pure hand regions can be identified,
poses can be estimated by SVM classification [Rogez et al. 2015a,b]
and hand part classification [Hamer et al. 2009; Sridhar et al. 2016].
Recently, recurrent neural network (RNN) is used to recover failed
detection caused by occlusions of the hand itself [Quach et al. 2016].
The RNN computes joint coordinate directly and contributes to han-
dling occlusion situations. Choi et al. [2017] use a convolutional
neural network (CNN) to localize hand and unknown objects, and re-
construct hand poses by identifying the global orientation of objects
and grasp type of hands. Mueller et al. [2017] also explore CNN in
hand localization and joint detection, but majorly focus on egocen-
tric RGB-D input. Panteleris and Argyros [2017] use short-baseline
stereo cameras to reconstruct hands when interacting with objects
or another hand, by exploring color consistency. Taylor et al. [2017]
propose an articulated signed distance function to avoid explicit
correspondences and achieve extremely fast hand pose estimation.
Mueller et al. [2018] use GAN to produce annotated RGB images
and achieve a real-time hand tracking system from unconstrained
monocular RGB images. In general, techniques for pose estimation
during hand-objects interactions have been highly developed in
the literature, but they majorly focus on hand but not objects. The
objects are assumed to be with known shapes or not reconstructed
in the final results.

2.2 In Hand Reconstruction
On the contrary, some other works majorly focus on the objects in
interactions. A variety of methods [Krainin et al. 2011; Rusinkiewicz
et al. 2002] use Iterative Closest Point (ICP) to register the scanned
point cloud of multiple frames to reconstruct the final object shape.
Weise et al. [2008] combine texture and geometry information to-
gether to pursuit better reconstruction. Weise et al. [2011] propose
an online loop closure method to remove the accumulated errors and
reconstruct the final complete 3D model. Yuheng Ren et al. [2013]
propose a probabilistic framework to jointly handle tracking and re-
construction problems for objects in hand. However, these methods
just use hands as a turntable and discard them in the reconstruction,
and thus they are not able to handle objects with neither geometry
features nor textures. Recently, some works consider hand motion
in the reconstruction. Tzionas and Gall [2015] extract hand motions
and use contact information to predict object motions to solve the
problem of lacking geometry or texture features, but this work still
only considers rigid objects. Recently, Petit et al. [2018] reconstruct
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Fig. 2. Overview of our tracking pipeline.

the in-hand nonrigid motions of an object rather than the static
shape of the object. However, they require to scan the initial shape.

2.3 Joint Hand-object Reconstruction
Different from all the previous methods, this paper focuses on simul-
taneously reconstructing 3D motion of the hand and the interacted
object, including its shape and its nonrigid motions in the sequence.
Panteleris et al. [2015] assume a rigid object, and reconstruct its ge-
ometry as well as 3D hand motions. A variety of methods [Schmidt
et al. 2015; Tzionas et al. 2016] reconstruct articulated motions of
objects with hand poses, but they require an initial shape of the
object, and thus always require a 3D scan of a new object. Tsoli
and Argyros [2018] make a step further to handle nonrigid motions
by exploring appearance features, but again, their method requires
an initial shape of the object. In this paper, we get rid of all these
constraints to reconstruct the shape and nonrigid motions of an
object, as well as the motions of the hand manipulating the object.
Furthermore, we achieve real-time performance.

3 OVERVIEW
Our system uses two depth cameras to record interacting motions
from two opposite directions. The two cameras are pre-calibrated
and the recorded depth streams are synchronized to form a sequence
of paired depth frames. To keep real-time performance, the system
runs in a frame-by-frame manner, i.e., processing depth pairs one
after another. Fig.2 illustrates the processing of one depth pair. The
first step is the Hand-Object Segmentation, in which the hand and
the object are segmented apart from each other through a trained
network. Notice that the two frames in the pair are segmented in
parallel as the network is trained to segment one frame indepen-
dently. Meanwhile, The reconstructed hand poses of the previous
depth pairs are fed into another trained LSTM model to predict a
hand pose of this pair.
Following are the Joint Hand-Object Motion Tracking and Ob-

ject Model Fusion. Firstly, the motions of the hand and the object
are estimated by solving a unified optimization problem to fit the
segmented depth, the predicted pose prior and other proposed reg-
ularization terms. After the motion estimation, we fuse the masked
depth of the object into its current geometry model, leading to a

more smooth and complete reconstruction. Now, the hand and ob-
ject of this frame are both obtained and can be used in the processing
of the next frame.

4 PRELIMINARY
In this section, we present the notations and mathematical represen-
tations used in this paper. The synchronized paired depth sequence
is denoted as {Dt

0 ,D
t
1 } (t indicates the frame label). Here 0 and 1

indicate the left and right depth camera respectively. It should be
noted that consumer depth sensors could record a color sequence
along with the depth sequence, but in this work, we only use color
information to detect the bracer and further to get the hand-object
depth by the method introduced in [Tkach et al. 2016]. The recon-
structed object is represented as a fused static model S and its
per-frame non-rigid motion is represented as a motion field W.
The per-frame hand motion is represented as joint rotations with
totally 28 Degrees of Freedom (DOF) θ (including 6 DOF for global
rotations and translations).

To be more specific, following the work [Newcombe et al. 2015],
we use Truncated Signed Distance Function (TSDF) to represent the
static model of objectS, which is defined asS = {d(x),w(x)}, where
x is a coordinate in a canonical frame, d(x) indicates the signed
distance from x to its closest surface point andw(x) represents the
confidence of d(x). We use the coordinate system of the left depth
camera as the world coordinate system and its first recorded frame
as the canonical frame to represent S. The surface mesh M of the
object can be extracted by the zero-valued surface of S as:

M = {(v,n)|d(v) = 0,n =
▽d(v)

∥ ▽ d(v)∥2
} (1)

Since S is represented in the canonical frame, M is called the
canonical model. Given a motion field W(x), a live model Ml is
represented as:

Ml = {(vl ,nl )|vl =W(v)v,nl =W(v)n} (2)
The live model Ml is a deformed shape of the object which is used
to represent the geometry of the object in a live recorded frame.

To represent the non-rigid deformation of objectW(x), we follow
the method in DynamicFusion [Newcombe et al. 2015]. Specifically,
a node-based motion representation method is used to represent
W(x). At first, a set of nodes are sampled uniformly on the surface
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of the canonical model M, and we define a compact motion field
on the nodes: WN = {[pi ,Ti ]} . pi ∈ R3 is the coordinate of the
ith node in the canonical frame. Ti ∈ SE(3) is the transformation of
the ith node. Then, the motion field W(x) can be interpolated by
the node motions:

W(x) = SE3(
∑

k ∈N (x)

ωkdqk ) (3)

where N (x) contains the indexes of nodes which have influence on
x, dqk is the dual quaternion of Tk . ωk = exp(−∥x − pk ∥2/(2σ 2))
decides how much the kth node has influence on x. SE3(·) converts
a dual-quaternion back to a transformation matrix.
We follow [Tkach et al. 2016] to use sphere-mesh to model and

track a hand. A sphere mesh is the mesh surface of the convex-hull
of some spheres, and there are two types of basic sphere meshes
used to represent a hand. One type (type 1) is constructed by two
spheres, and the other (type 2) is constructed by three spheres.
The geometry of a hand is modeled by assembling 30 basic sphere
meshes, including 15 type 1 sphere meshes to majorly model fingers
and 15 type 2 sphere meshes to model palm. Different poses are
represented as different relative motions between the neighboring
basic sphere meshes. Therefore, the motion of a hand is also defined
on the sphere meshes. After pre-calibrating the geometry of a hand
(deciding the relative position of the spheres and their sizes), the
motion of a hand is represented as rotations at hand joints θ . Please
refer to [Tkach et al. 2016] to get more details.

5 METHOD
In this section, we will introduce the key steps in our method. For a
new time instance t , we have the input pair {Dt

0 ,D
t
1 }, the current

static model S as well as the motion fieldWt∗ and the hand motion
θ t∗ of all the previous frame t∗ (t∗ = 0, ...t − 1). The whole method
in this section will generate our final output including Wt , θ t and
an updated S.

5.1 DNN based Hand-Object Segmentation
In this step, we segment an input depth map into three parts: hand,
object and background. This step is important because otherwise we
may easily use the depth of the object to estimate the motion of the
hand, and vice versa, as the hand and the object are closely interacted.
To perform the segmentation, we use a specialized deep learning
network - DenseAttentionSeg [Bo et al. 2019]. The network consists
of an encoder and a decoder, together with an attention mecha-
nism to enhance the skip-connection between them. We shrink the
network image size to 320x240 and use a multi-thread pipeline to
increase the processing speed.

5.2 LSTM-based Pose Prediction
Although we use two cameras to avoid occlusion, there are still
situations that both the cameras cannot catch enough data for some
fingers. Besides, the segmentation model may also have defects in
some frames, which may cause jittering and wrong pose estimation
in the tracking step. So we use an LSTM-based network [Hochre-
iter and Schmidhuber 1997] to learn a motion prior of hand with
interacting motions, which is considered as a corrective model for
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Fig. 3. LSTM pose prediction network. The input and output dimensions
of the hand predictor are both 22. We use a stacked 3-layer LSTM, each
of which has 256 units. FC means fully connected layer followed by the
number of the output dimension.

the Joint Hand-Object Motion Tracking system. The prior helps
to eliminate high-frequency pose jittering and predict reasonable
hand poses where there are occlusions or segmentation errors. The
network consumes the hand poses of previous frames solved by
the Joint Hand-Object Motion Tracking system, then outputs a pre-
dicted hand pose based on the previous observations and learned
strategy, which will be used by the tracking system in the following
frames.

Our LSTM network takes 22 DoFs as input and predicts a new 22
DoFs as output. Although there are 28 DoFs in [Tkach et al. 2016],
we don’t consider the translation and rotation degrees of the palm
(6 DoFs in total) because it barely contains noise. The values of all
DoFs are between −π and π . Using this pose representation is more
robust and reasonable than using joint coordinates directly [Quach
et al. 2016]. The network structure is shown in Fig 3, including
an input projection layer to encode hand poses, a 3-layer LSTM of
dimension 256 to handle the pose sequence and an output projection
layer to decode the feature back into a pose vector.

We construct the training dataset of the LSTM as follows. First, in
order to make the network learn a motion space of the tracked hands
in interactions, we collect many hand pose sequences with different
interactive motions, including manipulating real objects (tracked
by our method but without LSTM), and pretending to manipulate
objects (tracked by the baseline [Tkach et al. 2016]). We manually
check the tracked poses by comparing the point cloud and the
tracked hand, and select the sequences which are clear and accurate.
Then, to model the possible errors generated by the tracking system,
we add random gaussian noises to the sequences and build the input
of our network. To be specific, we randomly select no more than 3
DoFs in each frame. Then we add to the i-th DoF with a zero-mean
gaussian noise whose standard deviation σ is:

σi = α · ci (4)
where ci is used to control the magnitude of the added error of the
i-th DoF. ci is uniformly sampled between 0.41-0.91 if the Dof is
selected, otherwise, ci is sampled between 0.01-0.11. α is set to 0.7
which means the mean deviation of noises for the selected Dof is
about 0.45. Finally, we smooth the originally tracked pose sequences
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to build the output ground truth of our LSTM, in consideration of
time continuity and possible high-frequency jittering noises when
tracking. The window size of the linear weighted mean smoothing
filter is 7 frames.The predicted hand pose at frame t is denoted as
θ tp .

5.3 Joint Hand-Object Motion Tracking
As previously mentioned, our system operates in a tracking proce-
dure. Therefore, for frame t , we have the current static model S in
the canonical frame, the motion field of the object Wt−1

N
and the

hand pose θ t−1 of the previous frame. Using the newly recorded
depth in frame t and the segmentation and pose prediction results,
the algorithm presented in this section will reconstruct the motion
of the objectWt

N
and the hand pose θ t at this frame. We propose a

unified optimization framework for best fitting the input depth as
well as satisfying all our proposed regularization terms. The energy
function is formulated as follows:

Etol(W
t
N
,θ t ) = Eobt(W

t
N
) + Ehand(θ

t ) + ωitcEitc(W
t
N
,θ t ) (5)

where Eobt(Wt
N
) is the energy term defined on the object, Ehand(θ t )

is the term for the hand, and Eitc(W
t
N
,θ t ) is the interaction term

related to both the hand and the object. Prior to solving the energy
function, we first extract a surface mesh M from the current static
model S, and the node graph G is obtained via graph generation or
graph updating (Details can be found in [Newcombe et al. 2015]).

5.3.1 Energy Term of the Object. The energy term, which is purely
related to the deformation of the object, is formulated as:

Eobt(W
t
N
) = Eo-dep(W

t
N
) + Eo-silh(W

t
N
) + Eo-reg(W

t
N
) (6)

where Eo-dep and Eo-silh are data terms that constrain the motion of
object to be consistent with the depth input, Eo-reg regularizes the
resolved motion to be as locally rigid as possible.
The term Eo-dep is to constrain that the reconstructed object

should be consistent with the recorded depth of the object, which is
formulated by a point-to-plane energy:

Eo-dep(W
t
N
) =

1∑
s=0

∑
(vl ,ut )∈Csdep

(nTut (vl − ut ))2 (7)

where s is the index of a sensor, ut and nut are the coordinate and
normal of a 3D point captured at frame t in the global coordinate
system. Cs

dep indicates the correspondences between the vertices of
the live model Ml and the point cloud captured by sensor s , which
is built by the projective ICP method [Rusinkiewicz and Levoy
2001]. Notice that a minimum distance threshold for (ut , vl ) and a
minimum cosine threshold for (nut ,nl ) are used to eliminate the
outlier correspondences as [Newcombe et al. 2015] did.
Eo-silh(W

t
N
) is to penalize the model from lying outside the

boundary of the object in the 2D image domain. The energy is
constructed by 2D point-to-point constraint:

Eo-silh(W
t
N
) =

1∑
s=0

∑
(vol ,u

t
e )∈C

s
silh

∥Πsvol − Πsute∥
2
2 (8)

where vol is a vertex of the live model whose 2D projection on sensor
s is outside the mask of the object, ute is a recorded depth point
projected onto the edge of the mask. Πs is the 3D to 2D projection
for the sensor s . Here, we use orthogonal projection to maintain
a linear problem. vol and ute form a correspondence pair in Cs

silh
in the condition that Πsute has the minimum 2D distance to Πsvol
comparing with other depth points.
Eo-reg(Wt

N
) is to regularize the deformation of the object. Since

we assume the object could have some nonrigid motions, strong
smooth or rigid regularization is not adequate. However, we observe
that for an object interacted by hands, non-rigidity does not happen
everywhere. It majorly happens around contact points where exter-
nal forces may be added to the object. For other regions which are
far from contact points, there will be no external forces except the
gravity. For these regions, they will majorly follow rigid motions
even though the object is a nonrigid one. Based on this observation,
for each node in the motion graph of the object, we calculate its
distance to its nearest contact point and decide the regularization
based on this distance. If a node is far from any contact points, it
will have a strong rigid regularization, otherwise, it will have a weak
regularization. In this manner, possible nonrigid motions can be
correctly generated while rigid regions still have enough constraints
to be robustly estimated with occlusions. Furthermore, the regular-
ization contributes to reduce error accumulation and thus is helpful
for achieving loop closure. The energy term is designed as follows:

Eo-reg(W
t
N
) =

∑
j ∈G

∑
i ∈Nj

Ω(pi ) + Ω(pj )
2

∥Ttj pj − Tti pj ∥
2
2 (9)

whereNj contains the adjacent nodes of node j in the node graph G.
Ω(p) is the smooth coefficient determined by the distance of node p
to its nearest contact point on the surface of the object. The method
to detect contact points is formulated in Sec. 5.3.3.

5.3.2 Energy Term for Hand Tracking. Ehand(θ
t ) is the energy term

which is only related to hand poses and is formulated as:

Ehand(θ
t ) =ωd2mEd2m(θ

t ) + ωm2dEm2d(θ
t ) + ωposeEpose(θ

t )

+ ωlimElim(θ
t ) + ωcolliEcolli(θ

t )

+ ωtempEtemp(θ
t ,θ t−1) + ωlstmElstm(θ

t )

(10)

where Ed2m(θ t ) measures the distance between the recorded depth
points and surface points on hand. Em2d(θ

t ) is to prevent the tracked
hand from lying outside of the visual hull of the real hand. Epose(θ t )
and Elim(θ t ) is to involve the pose prior and ensure the joint limits
are not violated. Ecolli is to prevent collisions between fingers, and
Etemp is to maintain the time continuity of hand poses. For more
details of these terms, please refer to [Tkach et al. 2016].

The novel part in Ehand is the prediction term Elstm(θ
t ). As men-

tioned in the introduction, for hand object interactions, occlusions
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Fig. 4. Intersection detection for sphere meshes. The red spheres are the
original spheres and the blue wireframe spheres are some new spheres.
We have not drawn all new spheres but only their centers as dots on the
“skeleton” of sphere meshes. For a point P , we calculate their distance to
all the centers to construct the interaction term. The left sphere mesh is of
type 1 and the right type 2.

become much stronger. It is not enough to solve the caused ambigu-
ity by the traditional regularization terms like Epose, Elim, Ecolli and
Etemp. Some hand joints may be occluded leading to wrong poses
which are still in the possible pose space (Epose cannot help) and
do not exceed the joints limits or collide to other fingers (Elim and
Epose cannot help). And furthermore, the joints may be occluded for
a long time (Ecolli and Etemp cannot help). On the other hand, our
LSTM-based predictor is trained with long time information, and
thus an occluded joint could be more precisely predicted based on
the long time motion information of all other joints in a hand. So
we propose to use the predicted hand poses to further constrain the
solution space. The prediction term Elstm(θ

t ) is defined as follows:

Elstm(θ
t ) = ∥θ t − θ tp ∥

2
2 (11)

5.3.3 Energy Term for Interaction Constraint. Different from the
previous terms, the interaction term (also called contact term) con-
strains both the motions of the hand and the object. This term is
based on the simple observation that the hand will never intersect
the object, which has been used in previous interaction-related pa-
pers [Tsoli and Argyros 2018]. However, due to the requirement for
real-time performance, we cannot check all the surface point on the
object with all the surface point on the hand. Instead, we propose a
more efficient formulation.
For hand, we first sample some new spheres centered on the

“skeleton” of the sphere meshes, and we only check whether an ob-
ject surface point vl intersects with its nearest sphere. The skeleton
is a line for a type 1 sphere mesh and a triangle for a type 2 sphere
mesh as shown in Fig.4, and the centers of the new spheres c are
uniformly distributed on the line segment or in the triangle. In our
implementation, we sample one new sphere for type 1, which is cen-
tered at the middle point of the line segment, and four new spheres
for type 2, which are in the middle of the three edges of the triangle
and the centroid of the triangle. The radius of the new spheres are
also linearly interpolated by the radius of the corresponding original
spheres. Then we calculate di to check intersection:

di (vl , c) = rc + nl (vl − c). (12)
rc is the radius of the nearest sphere. If di > 0, vl is in the sphere,
otherwise, vl is on or outside the sphere.
Then the interaction constraint can be formulated as:

Eitc(W
t
N
,θ t ) =

∑
(vl ,c)∈Citc

τ (di (vl , c)) ∗ (di (vl , c))
2 (13)

where τ (r ) is an indicator function, which equals to 1 when r > 0.
Otherwise, it equals to 0.Citc contains all the possible pairs of object
surface point vl and the spheres. Notice that di is also used to detect
contact point for constructing Eo-reg. To be specific, if di (vl , c) >
−5mm, vl is a contact point.
Notice that the interaction term works on the contact region

between the fused surface of the object and the hand, so it is not
related to whether the object model is fully built up or not.

5.3.4 Optimization Strategy. The minimization of the total energy
of Eq.5 over the object motion field Wt

N
and the hand pose θ t

is performed by a Gauss-Newton approach. We solve the motion
field Wt

N
and θ t iteratively by setting the other as constant. The

optimization is performed for 5 times for one frame. The contact
points are updated after each iteration.

5.4 Object Model Fusion
After the tracking of both hand and object, the depth data of the
object in {Dt

0 ,D
t
1 } will be fused into the canonical model S. Notice

that we could directly use the DNN-based segmentation mask of the
object to identify the object depth. However, since the DNN may
contain some errors and we already have a more reliable tracking
result, we can use the tracked hand to further get rid of outliers. To
be specific, we check whether a depth point in the object mask is
close enough to the tracked hand with a threshold b (b=7mm). If
so, we ignore it. Then we follow [Newcombe et al. 2015] to fuse the
surface model of the object.

6 EXPERIMENTS
In this section, we first report the performance and the main parame-
ters of the system. Then, we evaluate each of our main contributions
and compare our method with previous state-of-art methods for
hand tracking and object reconstruction qualitatively and quantita-
tively. Finally, we show the final results of our solution.

6.1 Performance and Parameters
Our system runs in real-time (running at about 40ms per frame).
We use two RealSense SR300 sensors to capture hand-object inter-
actions at 30Hz. The main algorithm for hand-object tracking and
object fusion is implemented on one NVIDIA TITAN Xp GPU. The
hand-object tracking takes 36ms, while the object fusion takes 2ms.
Another time-consuming step includes the hand-object segmenta-
tion and the LSTM-based prediction, which take about 22ms on
another GPU sever including the data streaming. Since we have
made the two steps in a pipeline, we still achieve real-time perfor-
mance but with a 40ms delay.

For all our experiments, we choose ωitc = 0.2, ωd2m = 1, ωm2d =
0.5, ωpose = 4e2, ωlim = 1e7, ωcolli = 1e3, ωtemp = 0.05, ωlstm =
1e4. The size of voxel for object fusion is 2mm in each dimension.
The mean distance between neighboring nodes on object surface is
10mm. For each vertex of the object model, we find 4 nearest nodes
to interpolate the motion field.

6.2 Evaluations
6.2.1 Training of LSTM based pose predictor. We collect 34 interac-
tion sequences of one person with about 20k frames for the training
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Fig. 5. Quantitative evaluations of the interaction term and the LSTM for hand tracking on different sequences. "BL" means the baseline. "Intr" means the
interaction term. "Lstm" means the pose prediction term based on LSTM.

Table 1. Evaluation of the trained LSTM. To model real tracking errors, we
add random noises to the inputs in the evaluation, and we calculate the
errors by averaging ten epochs of evaluations for both the training set and
the valuation set. Note that the error is shown in radian value, and the mean
standard deviation of the selected DoFs is about 0.45.

Train set Evaluation set
All DoFs Selected DoFs All DoFs Selected DoFs

Radian Errors 0.0318 0.0398 0.0399 0.0465

of our LSTM pose predictor, 16 sequences of which are about dif-
ferent manipulations with four real objects. We split 10% of the
frames as the evaluation set. We segment our training sequences
into small sub-sequences with maximum 100 frames for training,
so the max unrolling steps is 100. And we set a crossover rate of
10% between two consecutive training sequences. The evaluation
details are shown in Table 1 after a training of 100 epochs using
Adam optimizer [Kingma and Ba 2014] with a learning rate of 0.001.

6.2.2 Ablation Study for Hand Tracking. The baseline of our method
for hand tracking is [Tkach et al. 2016], which is proposed to track
the isolated hands. Therefore, it faces difficulties in handling hand
tracking in hand-object interactions because of the heavy occlu-
sions and segmentation errors, even though it contains a static pose
prior term, and a temporal term which considers only two previous
poses. To obtain a more accurate and realistic tracking result, we
introduce the interaction term and the pose prediction term based
on LSTM. To quantitatively evaluate the tracking accuracy, we man-
ually annotate a few selected keypoints on three benchmarking
sequences: "RotatePepper" with 440 frames, "PourBottle" with 280
frames and "ReconstructCat" with 890 frames. We project the five
tracked fingertips onto the reference color image (640x480) and
measure their average errors to their ground truth. Note that we
input the segmented hand of the two streams to the baseline in our
experiments. Fig. 5 shows the error curves and Table 2 shows the
average errors. From the results, both the interaction term and the
LSTM can improve the accuracy of hand tracking, but they have
different effects.

The interaction term majorly helps in handling occlusions in the
input. Fig. 6 shows a frame where a pepper occludes the middle
finger from both the two cameras. Adding the interaction term
to the baseline method solves the wrong finger pose, because the
interaction term ensures the physical plausibility, which is used as

Fig. 6. Tracking results in the "RotatePepper" sequence at frame 135. The
colorful points in the reference color image are the projected points of the
five tracked fingertips.

Table 2. Average pixel errors of different sequences. The average is calculated
from all the frames shown in Fig. 5.

BL BL+Intr BL+Lstm BL+Intr+Lstm
RotatePepper 28.4 14.4 17.1 14.1
PourBottle 7.1 6.3 7.0 6.4

ReconstructCat 12.5 12.7 11.8 11.5

a constraint to solve the ambiguity brought by occlusions. Besides,
Fig. 5 and Table 2 show the comparing results on more frames
in different sequences, which sufficiently shows the power of the
interaction term.
The LSTM-based pose predictor has contributions in handling

occlusions, segmentation errors and highly-frequency jitters. Fig. 6
demonstrates the power of LSTM in handling occlusions. Even
though adding it to the baseline cannot fully solve the wrong esti-
mation, it does improve the results a lot. Actually, the LSTM can
supply a reasonable guess for the hand pose, but it cannot avoid
the crossing between the hand and the reconstructed object. On the
other hand, the LSTM can handle segmentation errors as shown
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Fig. 7. Tracking results in the "ReconstructCat" sequence at frame 210.

Fig. 8. Tracking results in the "Octopus" sequence at some selected frames.

in Fig. 7, where one leg and one hand of the toy is wrongly seg-
mented as hand. Because our LSTM observes longtime information
of the hand motions in interactions, it predicts reasonable poses and
solves the wrong estimation. The LSTM also avoids possible highly-
frequency jitters as shown in Fig. 8, because it learns to recognize
the correct patterns of real hand motion sequences. The results of
LSTM on more frames in more sequences are fully compared in
Fig. 5 and Table 2.

6.2.3 Ablation Study for Object Tracking.

Spatial-temporal Varying Rigidity Regularizer for Object Tracking.
In the tracking of the object, we propose a spatial-temporal varying
regularizer of rigidity based on the observation that the object sur-
face far from contact points should be more likely to be rigid, while
the one close to contact points should be more likely to have non-
rigid deformations. For the method using fixed rigidity coefficient, it

Fig. 9. Evaluation of variational rigidity strength for object loop closure. (a)
Reference color. (b) Results with small rigidity strength. (c) Results with
variational rigidity strength.

Fig. 10. Evaluation of variational rigidity strength for non-rigid motion
tracking. (a) Reference color. (b) Results with big rigidity strength. (c) Results
with variational rigidity strength.

Fig. 11. Evaluation of the interaction term for object tracking. (a) Refer-
ence color. (b) Results without the interaction term. (c) Results with the
interaction term.

is hard to obtain both a good loop closure (in which case we need a
strong rigidity term to make the invisible regions follow the motion
of visible regions) and a good non-rigid motion tracking (in which
case we need a weak rigidity term to give more motion flexibility).
The comparisons between fixed rigidity strength and our variational
one are illustrated in Fig. 9 and Fig. 10. For a small coefficient (Ω(x)
smaller than 40), it is hard to obtain a good rigid motion for the
invisible regions, leading to a bad loop closure, which can be seen
in Fig. 9(b). For a large coefficient (Ω(x) bigger than 30), it is hard
to obtain a good estimation of nonrigid motion, which can be seen
from Fig.10(b). By using variational rigidity coefficient (Ω(x) ranges
from 5 to 60 according to the distance to contact points), a better
loop closure and a better estimation of nonrigid motion can be both
achieved, which is shown in Fig. 9(c) and Fig. 10(c).

Interaction Term for Object Tracking. We have introduced an inter-
action term in our unified optimization. For object tracking, without
the interaction term, it is hard to track the deformation of the object
under the press of fingers because of the occlusion, leading to unrea-
sonable result as shown in Fig. 11(b). By introducing the interaction
term, a more reasonable result is obtained, as Fig. 11(c) shows.
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Fig. 12. Evaluation of the silhouette term for object tracking. (a) Reference
color. (b) Results without the silhouette term. (c) Results with the silhouette
term.

Fig. 13. Qualitative comparisons between our method and KinectFusion.

Silhouette Term for Object Tracking. We evaluate the silhouette
term for object tracking in Fig. 12. For the object with fewer geome-
try features (for example the paper tube), the ICP-based tracking
method cannot obtain accurate results. As shown in Fig. 12(b), the
model of the paper tube is wrongly reconstructed to be longer than
its real length. Other regularization terms cannot handle this either,
i.e. neither the variational rigidity nor the interaction term can con-
strain the motion of the paper tube along the direction indicated
by the blue arrow in Fig. 12. But after adding the silhouette term,
the motion of the object can be tracked accurately as shown in Fig.
12(c).

6.3 Comparisons
We compare our reconstruction performance with KinectFusion
[Newcombe et al. 2011] on a challenging sequence, rotating a cube.
As shown in Fig. 13, our method obtains better fused model than
KinectFusion. We also compare our tracking accuracy of the rigid
object with KinectFusion on a sequence "MoveCube" quantitatively.
To perform this comparison, we attach four markers on one face
of the cube and measure their average projective errors on the
reference color image (640x480). The ground truth of the markers
is obtained by simple color thresholding. Fig. 14 shows the error
curves and Fig. 15 shows the results of some frames. Our method
obtains smaller tracking error than KinectFusion because we have
the silhouette term and the hand-object interaction term, and the
joint tracking can better solve the ambiguities of cube motions.
We compare our tracking accuracy of non-rigid motion with

DynamicFusion [Newcombe et al. 2015] on a sequence "PressToy"

Fig. 14. Object tracking accuracy comparison with KinectFusion on se-
quence "MoveCube". "KinectF" means KinectFusion.

Fig. 15. Object tracking results on sequence "MoveCube". The four colorful
points are the projections of the tracked vertexes.

Fig. 16. Object tracking accuracy comparison with DynamicFusion on se-
quence "PressToy". "DynamicF" means DynamicFusion.

quantitatively. We perform the comparison as that with KinectFu-
sion, but use nine markers. Our method also obtains better tracking
accuracy than DynamicFusion, as shown in Fig.16. The major reason
is that for interacting motion, the occlusion is too heavy and our
method introduces the interaction term to solve the ambiguities,
obtaining more accurate and realistic results, as shown in Fig.17.

6.4 Results
We select some frames from our results and show them in Fig. 1
and Fig. 19. We can see that our method can handle both nonrigid
and rigid objects with various shapes (from strip-like to sphere-like)
and materials (paper, cloth, rigid material, elastic material, slow
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Fig. 17. Object tracking results on sequence "PressToy". The nine colorful
points are the projections of the tracked vertexes.

Fig. 18. Failure cases of our system. (a) Strong deformation of cloth. (b) Very
fast motion. (c) Failed segmentation.

rebounding polyurethane material, and so on), and also various
interactions with delicate and individual finger motions. Please
refer to our accompanying videos to see more results.

6.5 Limitations and Future Work
First, we have not incorporated color information into our main
system and we only use a simplified contact constraint but not a full
physical regularizer which may further reduce the ambiguity. Thus
there are some geometry ambiguities which we cannot solve. For ex-
ample, we can only reconstruct the translation but not the rotation
of a high rotational symmetric object in hand. Second, our system
cannot handle some challenging cases, such as strong deformations
and very fast interactions as shown in Fig.18(a, b). Since our system
demands a relatively good segmentation, severe segmentation error
will lead to the failure of hand tracking as shown in Fig.18(c). Fi-
nally, our system cannot handle two hands or multiple objects. We
don’t consider topology changes caused by interactions either. Even
though our system is based on DynamicFusion [Newcombe et al.
2015], there are other great techniques which can handle topology
changes of objects, such as Fusion4D [Dou et al. 2016], KillingFusion
[Slavcheva et al. 2017] and SobolevFusion [Slavcheva et al. 2018]. We

will refer to these techniques to explore the reconstruction of hand-
object interactions with two hands, multiple objects and topology
change in our future work.

7 CONCLUSIONS
This paper has proposed a novel real-time system to reconstruct
hand-object interactions from two depth streams recorded at two
opposite viewing points. Hand poses, 3D object models and defor-
mations are all reconstructed in a uniform optimization framework.
A DNN is used to segment the depth and an LSTM is used to predict
hand poses to provide useful information. And a generative model
integrates the information and further involves a spatial-temporal
varying rigidity regularizer to not only help to solve ambiguities
but also give enough freedom to track nonrigid motions. A sphere
mesh-based contact regularizer is also proposed with a novel contact
detection mechanism to guarantee the real-time performance of the
system. As far as we know, this is the first system that achieves hand
pose estimation, object 3D reconstruction and tracking in real time.
And we believe this technique can be further used in HCI, robotics,
animation and so on.
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