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Semantically Disentangled Variational
Autoencoder for Modeling 3D Facial Details

Jingwang Ling, Zhibo Wang, Ming Lu, Quan Wang, Chen Qian and Feng Xu†

Abstract—Parametric face models, such as morphable and blendshape models, have shown great potential in face representation,
reconstruction, and animation. However, all these models focus on large-scale facial geometry. Facial details such as wrinkles are not
parameterized in these models, impeding accuracy and realism. In this paper, we propose a method to learn a Semantically
Disentangled Variational Autoencoder (SDVAE) to parameterize facial details and support independent detail manipulation as an
extension of an off-the-shelf large-scale face model. Our method utilizes the non-linear capability of Deep Neural Networks for detail
modeling, achieving better accuracy and greater representation power compared with linear models. In order to disentangle the
semantic factors of identity, expression and age, we propose to eliminate the correlation between different factors in an adversarial
manner. Therefore, wrinkle-level details of various identities, expressions, and ages can be generated and independently controlled by
changing latent vectors of our SDVAE. We further leverage our model to reconstruct 3D faces via fitting to facial scans and images.
Benefiting from our parametric model, we achieve accurate and robust reconstruction, and the reconstructed details can be easily
animated and manipulated. We evaluate our method on practical applications, including scan fitting, image fitting, video tracking, model
manipulation, and expression and age animation. Extensive experiments demonstrate that the proposed method can robustly model
facial details and achieve better results than alternative methods.

Index Terms—Detail reconstruction, facial animation, semantic disentanglement.

F

1 INTRODUCTION

HUMAN faces always draw the most attention in our
daily communication. Therefore, it usually takes the

majority of the effort in generating CG characters for gaming
and movie industries. Parametric face models are often used
to efficiently represent facial shape variation and flexibly
control its deformation. 3D morphable models are one kind
of popular parametric face models, which can be repre-
sented by PCA [1], High-Order PCA [2], local PCA [3],
Graph Convolution Network [4] or Skinned Multi-Person
Linear model [5]. 3D faces can be reconstructed by fitting
those morphable models to facial scans or images. However,
these methods usually consider only the large-scale facial
geometry. With the development of 3D acquisition tech-
niques, more accurate facial details can be captured and lead
to new face-related research trends. Therefore, it is crucial to
devise an effective parametric model for 3D facial details.

This paper proposes the Semantically Disentangled Vari-
ational Autoencoder (SDVAE) to model 3D facial details.
SDVAE aims to purely represent facial details and leave the
large-scale geometry to traditional face models. We design
a detail model decoupled from large-scale geometry based
on the following considerations. First, large-scale parametric
face models are widely used in academia and industry.
A pure detail model can be easily integrated into many
existing techniques based on parametric models. Second,
the decoupling provides better flexibility and efficiency for
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face modeling. Existing works usually disentangle identity
and expression when modeling large-scale geometry. As for
fine-scale geometry, we argue that age is also essential as
it could independently affect facial details. Therefore, we
design a detail model when with independent control of
identity, expression and age.

Some specific challenges need to be handled to train
a model for facial details. First, facial details are highly
nonlinear, thus methods like linear models [1], [2], [3] fail to
generate reasonable results. Recent works [4], [5], [6] build
a Graph Convolutional Neural Network (GCN) for 3D faces
or bodies. However, we find GCNs cannot capture suffi-
cient facial details in our preliminary experiments. Instead,
we learn the model for facial details based on Variational
Autoencoder (VAE). Specifically, we represent facial details
as a displacement map, whose pixels represent offsets along
the normal directions of the large-scale face. We can embed
facial details to identity, expression, and age latent vectors
via the bottleneck structure of VAE. Thus, we can also
reconstruct the detailed 3D face by fitting the embedded
latent vectors. Under the framework of a VAE, we can learn
a controllable model with accurate facial details, which is
essential for realistic 3D face reconstruction and animation.

To control the facial details with semantic attributes,
we need to disentangle identity, expression and age. In
order to explicitly improve the separability, we enforce the
independence of the distributions in the latent space. To
achieve this, we concatenate the latent vectors and forward
it through a discriminator, which distinguishes the coupled
and independent distributions. The encoder of VAE will
be trained to generate latent distributions which are inde-
pendent enough to fool the discriminator. Therefore, the
correlation of identity, expression and age will be removed
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Fig. 1. Our parametric model can reconstruct facial details from an image or a facial scan, as shown by the image reconstruction results (top left) and
scan fitting results (bottom left). We can accurately fit the given scan and recover the missing part when only a half is given. We show expression
editing (top right) and the same identity at different ages (bottom right) to show the model’s ability to edit the generated details by varying expression
blendshape coefficients and ages.

in an adversarial manner.
Based on the proposed model, we apply it to sev-

eral applications, including scan fitting, image fitting and
model manipulation. We conduct extensive comparisons
with previous methods both qualitatively and quantita-
tively, demonstrating the advantages of our method. Our
contributions can be concluded as follows:

• We propose SDVAE to achieve the first semantically
disentangled morphable detail model, which allows
accurate reconstruction and semantic-specific manip-
ulation of facial details.

• We present a novel approach to effectively disen-
tangle the latent vectors of identity, expression and
age under the framework of VAE in an adversarial
manner.

• We apply our model to various applications of detail
reconstruction and manipulation, demonstrating its
advantages over previous methods.

2 RELATED WORK

Linear Morphable Face Model. [1] adopts PCA to describe
the variation in facial geometry and albedo. The learned
statistical model can perform 3D reconstruction and con-
trolled manipulation. [7] extends this approach to emotive
facial scans by using an additional PCA model, resulting in
a model for both identity and expression variation. [2], [8]
propose to use High-Order PCA to construct a multilinear
model, which models the combined effect of identity and ex-
pression variation. [9] presents a method to learn such mul-
tilinear models directly from raw scans by jointly perform-
ing model parameter optimization and scan registration.
[10] devises a method to jointly learn the model and register
the scans from 4D sequences, achieving riggable 3D face
reconstruction with specific facial expressions. [3] presents
a method to automatically segment the faces into areas

based on the displacements of vertices. An individual linear
model is learned the local information of each segmentation.
[11] proposes to employ sparse PCA with a group sparsity
term to construct a localized model from the training data.
[9] combines local PCA with an anatomical constraint to
learn the local deformation subspace. Blendshape [12] is a
special parametric model for expression space. [13] presents
a method to deform a specific subject given a set of pre-
defined template blendshape models. [14] extends it by
adapting the specific subject according to a small number
of static face scans in different expressions. Compared with
[13], [14] can construct more personalized blendshapes.
[15] proposes a method to use a set of linear expression
transfer operations to generate personalized blendshapes
from neutral shapes. [15], [16] can simultaneously track the
3D face and adapt the blendshapes in real-time. All the
above linear morphable models require establishing dense
correspondences between the training set of facial meshes.
However, facial details are difficult to align and struggle to
be represented by linear models.

Nonlinear Morphable Face Model. Compared with
widely used linear models, several methods are proposed
to model the facial variations nonlinearly. [17] introduces
a physical model based on passive flesh, active muscles,
and rigid bone structures. Therefore, nonlinear animation
effects are enabled with this physical model. With the
development of Deep Neural Networks (DNNs), several
methods are proposed to utilize the nonlinear capability
of DNNs. [4] proposes the first autoencoder that performs
graph convolutions on 3D meshes, obtaining more compact
representations compared with linear models. [18] uses a
VAE to model different levels of details by embedding shape
variations in different layers of the network. [19] learns the
statistical models of both shape and texture with graph
convolution networks, thus can perform colored mesh re-
construction with very light-weight models. [20], [21] corre-
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late identity and expression semantic attributes with facial
geometry using a nonlinear autoencoder. Generative Adver-
sarial Network (GAN) is also explored by the community
for 3D face modeling. [22] proposes a method to map 3D
face onto a 2D image domain and employ 2D convolutions
to learn a GAN of facial texture. However, their facial
geometry is still represented by a PCA model. [23] trains
a GAN to model the facial geometry and decouple different
factors like identity and expression. [24] presents a GAN
to model both facial geometry and texture with a focus on
detailed texture information. [25] proposes the first intrinsic
GAN architecture operating directly on a 3D mesh instead
of 2D image domain.

3D Facial Detail Reconstruction. Details are essential
for realistic 3D face reconstruction. Although the industrial
methods in [26], [27] can obtain high-quality facial details,
their multi-view camera systems are too complicated for
consumer-level usage. Plenty of methods [28], [29], [30] are
proposed to use Shape from Shading (SfS) techniques to
reconstruct the facial details without complicated industrial
systems. However, the numerical optimization of the SfS
technique is computationally complicated. [16] proposes a
system to employ a high-end GPU to achieve real-time
performance for facial detail tracking. [31], [32], [33], [34]
use Deep Neural Networks (DNNs) to recover the facial
details from input images. [35], [36] propose to train local
regressors from high-resolution capture data and predict
the detailed local geometry from large-scale shape or ap-
pearance. Although impressive detail reconstruction results
have been achieved by deep neural networks, none of the
method above can animate the details. [20], [37] are able to
synthesize dynamic details, but the details only lie in the tex-
ture. [38] learns a synthesis network from a high-quality 3D
scan dataset, which can infer facial geometric details under
various key expressions given a single image. However, as
they assume all the details in the input image do not change
with expression, they can synthesize plausible new details
but cannot deactivate existing details during animation. [39]
proposes a variational autoencoder to synthesize plausible
facial details from identity and expression coefficients of
a bilinear 3DMM. They focus on synthesizing plausible
details, but cannot reconstruct details of a specific person
from an input image or video. [40] is the first method
that can reconstruct riggable details from a single image.
They can reconstruct facial details by forwarding the image
through an encode-decoder network. As we will see in
Section 5.4.2, their reconstruction cannot fully reflect the
shading constraints in the image. On the contrary, our model
more accurately reconstruct the details by fitting to those
shading constraints. Moreover, our model can integrate a
temporal smoothness term during fitting to reconstruct tem-
poral coherent detail animation from an input video, which
is nontrivial for an encode-decoder network. Regardless of
various methods proposed for image detail reconstruction,
our model uniquely serves as an extension of 3DMM,
achieves accurate and controllable detail reconstruction, and
can be integrated into comprehensive 3DMM-related tasks
including image, video and scan fitting and expression and
age animation, as shown in Figure 1.

3 SEMANTICALLY DISENTANGLED FACIAL DETAIL
MODELING

Our goal is to build a model that can represent wrinkle-
level details of various identities, expressions and ages. It is
also compatible with an ordinary linear 3DMM [38], which
models the large-scale geometry. To achieve this goal, we
first extract facial details as a displacement map in UV space
and train a conditional VAE. We effectively disentangle the
latent factors, including identity, expression and age, in an
adversarial manner. During test time, besides fitting the
large-scale 3DMM, we also fit our VAE model to match the
input constraints for detail reconstruction.

In this part, we first describe the dataset used for net-
work training. Then, we introduce the network architecture
and training strategy of SDVAE. Finally, we leverage our
model to several practical applications, including scan fit-
ting, image fitting and model manipulation.

3.1 Preprocessing and Detail Extraction
Our method uses a large 3D facial detail dataset with ex-
pression and age annotations. Each sample of facial details
is represented as a 1-channel displacement map in a shared
UV space, where each pixel encodes the displacement along
the normal direction. In practice, these displacement maps
can be obtained from a 3D scan dataset. A template mesh
with predefined UV parameterization is first registered to
each 3D facial scan, then the difference between the 3D scan
and registered template is baked to deliver the displacement
maps. For each sample, the expression annotation is repre-
sented as blendshape coefficients, predefined before scan-
ning the user’s expression. The age annotation is a single
integer between 16 and 68, encoding a performer’s age. The
recently published FaceScape [38] dataset is a large-scale,
high-quality dataset that meets our requirements, which are
used as our training dataset.

To enable effective modeling with our semantically dis-
entangled VAE, detail-irrelevant components in the training
data should be removed. Besides, the displacement maps
should be appropriately aligned to achieve better correspon-
dences. The displacement map data released by FaceScape
[38] is obtained by first smoothing a 3D scan via Laplacian
filtering [41] and then subtracting smoothed scan from the
original scan to obtain details. Since Laplacian filtering often
causes mesh shrinking [42], low-frequency components are
encoded in the displacement maps as shown in Figure 3,
which will diverge the network’s modeling ability towards
low frequencies. Therefore, we perform Gaussian filtering
on the displacement maps, removing low frequencies by
subtracting the filtered displacement maps from the original
ones. Figure 3 shows that removing those detail-irrelevant
components does not affect mesh detail rendering, indicat-
ing that we do not lose any details in this preprocessing step.
Since FaceScape does not delicately build detail correspon-
dences during capture, the provided displacement maps
have slight misalignment across different expressions of the
same identity, which will cause artifacts such that identity-
specific wrinkles shift with expression changes in section
4.3. Since FaceScape provides each displacement map with
a corresponding color texture map, we compute the optical
flow field between neutral texture and expression texture
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Fig. 2. Overview of our method. We represent facial details as a displacement map and disentangle their representation into identity, expression,
and age latent codes. ẑexp and ẑage are expression and age codes from random samples within the mini-batch. They are concatenated with the
identity code to generate disentangled distributed data for discriminators. During model usage, we can obtain the identity code by extracting a detail
displacement map from the original face and encoding the details, and let a user edit expression and age with a fixed identity.
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Fig. 3. Low-frequency components are encoded into displacement maps
in the FaceScape dataset, shown in column 2 annotated by red boxes.
We remove low-frequency components, and the resulting displacement
map (column 3) and detailed face (column 4) has the same visual quality
of the face using the original displacement map (column 1).

using [43] and warp each expression displacement map
to align with its corresponding neutral displacement map
using the computed flow field. We observe that the newly
aligned displacement maps eliminate artifacts in expression
animation and further improve training.

Our model can represent a detailed face together with a
large-scale bilinear 3DMM. The large-scale 3DMM shares
the same UV parameterization with detail displacement
maps. Its expression latent code shares the same semantic
information with training displacement maps’ expression
annotations. Then, we denote the large-scale 3DMM by

xc = Gc(α, zexp) (1)

where xc is the vertex positions of the generated face, zexp
and α are expression and large-scale identity latent codes,
and Gc is a bilinear mapping that generates faces from latent
vectors. We further propose a detail generation module

df = Gf (zid, zexp, zage) (2)

where df is the per-pixel displacements in UV space, zid
and zage are detail identity and age latent codes, zexp is
the shared expression code consistent with the large-scale
expression representation, and Gf is our novel proposed
semantically disentangled VAE that generates facial details
given identity, expression and age semantic codes. We share
the expression representation between large-scale and de-
tails because the same muscles cause dynamic details and

large-scale deformation. However, we do not share identity
representation, as facial wrinkles contain extra identity in-
formation that large-scale shapes cannot represent. Finally,
a detailed 3D face is composed via

xd = sdiv(xc) +N(sdiv(xc)) · sample(df , sdiv(xc)) (3)

where sdiv(xc) is the subdivided vertices from the large-
scale face and N(sdiv(xc)) is the per-vertex normal direc-
tions of subdivided vertices. sample(df , sdiv(xc)) is the
displacements along normal directions sampled from dis-
placement map df .

3.2 Network and Training

Here we propose our semantically disentangled decoder Gf
previously mentioned as the detail generation module. It is
jointly trained with a variational encoder E , and auxiliary
discriminators Dexp and Dage to ensure disentanglement
between identity, expression and age, as shown in Figure
2.

To both model facial details and obtain a smooth disen-
tangled latent space capable of editing, we train Gf and E
with the following objective:

Ltotal = Lrecon + LKL + Ldis (4)

where Lrecon is the reconstruction loss, LKL is the KL
Divergence, and Ldis is the disentanglement loss to ensure
semantic separation between identity, expression and age.
Lrecon is given by

Lrecon = Ex∼p(x),zid∼q(zid|x)||Gf (zid, zexp, zage)− x||22 (5)

where x is the input displacement map, q(zid|x) = N (µ, σ)
and µ, σ = E(x) are Gaussian distribution parameters
regressed by the encoder E to approximate the posterior
distribution of identity latent vectors zid. zexp and zage
are not obtained from the encoder E , but directly from the
sample x’s annotations available in the dataset. Also, LKL
is given by

LKL = Ex∼p(x)[KL(q(zid|x)||N (0, I)] (6)
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to restrict the aggregated posterior to lie in a standard
Gaussian distribution to ensure a smooth latent space for
interpolation.

The latent representation should both contain sufficient
information and divide it into independent factors of vari-
ation with known semantic meaning, i.e., identity, expres-
sion, and age. First, the latent should reconstruct the input
displacement map, which is ensured by objective Lrecon.
Second, it should also make zid, zexp and zage disentangled
and only contain information of their specified semantic
labels, therefore becoming independent representations that
allow interpretable control. Then we can vary zexp or zage
and keep other semantic factors fixed to generate consistent
expression or age editing results of the same identity. We
add the Ldis that leads to this disentanglement and describe
it as follows. Consider the aggregate posterior distribution
of the latent q(zid, zexp) and its marginal distributions q(zid)
and q(zexp). If the identity latent is encoded with redundant
expression information, as the information of the two fac-
tors overlap, the joint distribution q(zid, zexp) will diverge
from the product of marginals q(zid, zexp) = q(zid)q(zexp),
which represents the ideal joint distribution when these
two factors are independent. We train a discriminator Dexp
to penalize the encoder by training it to tell coupled dis-
tributions from independent distributions. It can also be
viewed as to minimize the divergence between q(zid, zexp)
and q(zid, zexp) = q(zid)q(zexp) from a divergence min-
imization view of GANs [44]. Therefore, E is trained to
predict disentangled identity latent vector, which minimizes
the discriminator loss of Dexp. Following [45], we ran-
domly permute zexp within the same batch to generate
samples from the hypothetical independent distribution
q(zid, zexp) = q(zid)q(zexp), therefore let the discriminator
encourage the marginal distribution of latent to be factorial.
Age information is disentangled from identity similarly. The
disentanglement loss is formulated as

Ldis = LexpG + LageG (7)

where
LexpG = − log(Dexp(zid, zexp)) (8)

LageG = − log(Dage(zid, zage)) (9)

We train Dexp with the following objective to discrimi-
nate coupled and independent distributions

LexpD =− log(1−Dexp(zid, zexp))
− log(Dexp(zid, ẑexp))

(10)

and similarly train Dage with

LageD =− log(1−Dage(zid, zage))
− log(Dage(zid, ẑage))

(11)

where ẑexp and ẑage are expression and age latent codes
from randomly permuted samples within the mini-batch
during training.

During training, Gf , E , Dexp and Dage are jointly trained
via gradient reversal layers, which reverse gradients before
Dexp and Dage by a reversal factor −λ. λ is annealed from
0 to λmax during training to first train discriminators to tell
coupled and independent distributions, and then instruct
the encoder to generate independent latent distribution via
the reversed gradients.

4 MODEL FITTING AND MANIPULATION

4.1 Scan Fitting

Given a 3D facial scan, we want to obtain its large-scale and
detail representation, which enables further manipulation of
its expression and age attributes. We optimize both large-
scale and detail model parameters α, zid, zexp, zage and
rigid pose to minimize the following energy function

Escan = Elm + Eicp + EDR + Eαreg + Eexpreg + Eidreg (12)

where Elm is the 3D distance between vertices and land-
marks, Eicp is the point-to-plane distance between vertices
and scan points and EDR as will be described below is
the detail constraint between the extracted and generated
displacements. Eαreg and Eexpreg are regularization terms of
large-scale identity and expression codes. First, we initialize
α and zexp as the average identity and neutral expression
respectively, and initialize zid and zage as their empirical
means calculated on the training data. To make the energy
function tractable, we use a two-step fitting algorithm by
alternatively fitting the large scale and details in an iteration.
In the large-scale fitting step, we optimize α, zexp and
rigid pose and keep the other parameters fixed by solving
the 3DMM given a fixed displacement map. In the detail
fitting step, we optimize zid, zexp and zage and initialize
zexp from the solution in the previous large-scale step.
To avoid fitting to low-frequency mesh errors, for EDR
we extract high-frequency details as fitting constraints, by
filtering and extracting high-frequency displacements from
the input scan. Then the displacement values are projected
to UV space using the correspondences between scan points
and the current mesh obtained in the large-scale step. With
the extracted displacements dextract and the generated dis-
placement map df using current detail parameters, we can
formulate EDR as

EDR = ‖df − dextract‖22 (13)

After the detail step, the solved zexp is used as initialization
in the next large-scale step. We observe convergence after
three iterations.

Note that the input displacement map may contain holes
or scan noise. However, our detail module can generate
complete reconstruction and remove noise via its data-
driven prior Eidreg . Eidreg is formulated as the negative log-
likelihood of latent codes in a Gaussian mixture distribution.
Inspired by [46], we fit a Gaussian mixture model after train-
ing to approximate the prior distribution of latent codes.

4.2 Image and Video Fitting

To reconstruct a detailed 3D face from a single image, we
fit a large-scale model to the detected landmarks and a
detail model to shading constraints. The key difference from
the traditional SfS method is that we replace the Laplacian
smoothness term with our data-driven regularization term
in latent space. We minimize the following energy objective

Eimage = Elm + Esfs + Eαreg + Eexpreg + Eidreg (14)

where Elm is the distance between detected landmarks and
projections of corresponding vertices, Eαreg , Eexpreg . and Eidreg
are regularization terms same as described in section 4.1,

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2022 at 10:01:44 UTC from IEEE Xplore.  Restrictions apply. 



1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3166666, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

and Esfs minimizes the shading difference between input
image and rendered image in gradient space

Esfs =
∑
u∈xd

v∈adj(u)

‖(Iu − Iv)− (R(u)−R(v))‖22 (15)

where u and v are adjacent vertices on the generated de-
tailed mesh xd, Iu and Iv are intensities of corresponding
pixels on input image located at u’s’ and v’s projections
respectively, R is a rendering function that computes in-
tensities of the rendered image given the vertex normal
direction N(u) and environment lighting `sh

R(u) = shading(N(u), `sh) (16)

The environment lighting is represented as the first two
order environment spherical harmonics, and we solve `sh
by first obtaining a large-scale face reconstruction by only
fitting the 3DMM, and then solve `sh to minimize the
rendering difference between the input image and rendered
image.

Our model can also fit video data to track temporal-
coherent detailed face animation. Our large-scale tracking is
based on [16], and we feed RGB video frames to our detail
fitting method. The fitting algorithm is similar to single
image fitting, except that we use the previous frame’s result
as initialization and apply a temporal smoothness term on
model parameters.

4.3 Model Manipulation
Since our reconstruction lies in a parametric model space,
we can generate novel facial details by controlling semantic
latent codes. First, we obtain the representation in terms of
identity, expression, and age code from the reconstructed
face. Then, by varying the expression code while fixing the
identity and age codes, we can generate detailed 3D faces
under novel specified expressions of the same person at
the same age. We can also edit the subject’s age by varying
the age code while fixing identity and expression codes to
achieve aging and de-aging effects.

5 EXPERIMENTS

In this section, we first describe the implementation details.
Then we compare the representation power of our method
with popular parametric models. We evaluate the effects of
our disentanglement loss on expression and age. Finally, we
conduct a comparison with recent state-of-the-art method
on image reconstruction, and show a broad range of appli-
cations of our models on scan, image and video fitting and
animations of expression and age.

5.1 Implementation Details
We represent facial details as displacement maps at the
resolution of 256x256, which can encode wrinkle-level de-
tails well. We use 51 blendshape coefficients to represent
expression zexp ∈ R51. We normalize the age range from
[16, 68] to [−1, 1] and feed it as zage ∈ R into network.

Our model is trained using displacement maps from
the FaceScape dataset, and we use 10920 samples from
546 identities for training and leave 1180 samples from 59

TABLE 1
Fitting errors of our method and baselines on FaceScape dataset at

128 dimensions.

Ours PCA Bilinear
Training RMSE (mm) 0.0495 0.0517 0.0480

Test RMSE (mm) 0.0498 0.0539 0.0545
Number of Parameters (M) 7.732 8.0625 161.25

identities for testing. Both E and Gf are parameterized by
convolutions followed by Instance Normalization [47] and
ELU nonlinearity, with a fully connected layer in the middle
to convert feature maps to and from latent vectors. Both
Dexp andDage are parameterized by a 3-layer MLP network.
We train the network with Adam optimizer for 1000 epochs
with a learning rate of 1e-4. We set KL divergence weight as
0.01 and set λmax = 9 for the gradient reversal layer used
for adversarial training. We set the batch size to 60, which
is bounded by the memory of the graphics card. We repeat
age and expression latent codes to be of similar length to
the identity code before feeding them into discriminators to
facilitate adversarial training.

For both scan fitting and image fitting, the energy func-
tion is optimized via LBFGS algorithm implemented in
PyTorch. When doing scan fitting, we project scan details to
displacement map by first extracting details via Laplacian
filtering and then removing the low-frequency components
by Gaussian filtering, similar to the method in section 3.1.

Our fitting method runs on a standard PC with an Intel
Core i7-8700 CPU and an RTX 2080Ti graphics card. Our
detail module achieves 0.62s per frame for video tracking.
When doing model manipulation, our model can generate a
displacement map in 1.43ms.

5.2 Comparison with Other Parametric Models

We propose to use VAE in facial details modeling rather
than PCA and bilinear models, which are widely used for
large-scale face modeling. We compare the representation
power and robustness of our method with PCA and bilinear
models here on the test set of the FaceScape [38] dataset. We
first describe the methodologies of the baseline methods.
We perform PCA on the training set of displacement maps
to construct the PCA baseline. The bilinear baseline model is
constructed similar to the method in [2] but on facial details
rather than large-scale geometry. It is different from Gc as
it is a separate detail model that can be used on top of Gc.
Its expression dimension is 19 since we have one neutral ex-
pression and 19 other expressions in the FaceScape dataset.

We test the representation power by autoencoding test
displacement maps and evaluating the RMSE between in-
puts and decoded outputs. We test the reconstruction error
at latent dimensions from 4 to 256, and our VAE-based
method consistently achieves lower error than both PCA
and bilinear model on all the dimensions, s shown in Figure
4 left and Table 1. Please also note that our method costs
fewer model parameters. As shown in Figure 5, our method
reconstructs more expressive details than the baseline meth-
ods, by reconstructing more accurate forehead wrinkles
(row 2, row 3) and wrinkles around mouth (row 1, row 3,
row 4).
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Fig. 4. Fitting errors of our method, PCA and bilinear model on test displacement maps in the FaceScape dataset. We show fitting errors at different
dimensions on the left and fitting errors at dimension 128 when different levels of noise are added to input on the right.

(a) (b) (c) (d) (e)

Fig. 5. Fitting results of different detail representation models. From left
to right we show the input faces (a), our results (b), results of PCA (c),
results of bilinear PCA (d), and large-scale fitting only (e).

We also compare the robustness of prior spaces learned
from different methods using noisy displacement maps. As
each modeling method learns the prior information about
facial details from the dataset, it should recover facial details
and remove noise. The better the prior space is, the lower the
error between reconstruction and noise-free ground truth
should be. We add Gaussian noise to the inputs, feed the
inputs to each method, and compute fitting errors between
reconstructed results and the noise-free ground truth. We
quantitatively compare our method with PCA and bilinear
model under different noise levels, as shown in Figure 4
right. Our method consistently achieves lower error in the
experiment, demonstrating that our model learns a better
prior space than linear methods.

(c)(b)(a)(a) (b) (c)

Fig. 6. Evaluation of our expression disentanglement loss. We use our
method to convert the facial details in the inputs (a) to neutral expression
while keeping the identity unchanged and get the results (b) and (c).
The expression disentanglement loss is only used in (c) but not in (b).
Artifacts caused by coupled latent space in the baseline are denoted as
red boxes.

TABLE 2
Our expression disentanglement metric. We show the disentanglement
metric of our model without and with expression disentanglement loss.

w/o disentangle loss w/ disentangle loss
Mean std (mm) 0.0221 0.0159

Median std (mm) 0.0191 0.0130

5.3 Disentanglement Evaluations

In this section, we conduct an ablation study on the ad-
versarial disentangle loss, which is the key to disentangling
different semantic information.

5.3.1 Expression Evaluation
To quantitatively evaluate the disentanglement of identity
and expression in our model representation, we propose
to use the following disentangle metrics following a large-
scale mesh method [50]. For displacement maps of the
same identity with different expressions in the test dataset,
their identity representation should have the same semantic
information. Therefore we first encode their identity latent
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N-ICPoursinput scan M-wavelets N-ICPoursinput scan M-wavelets

Fig. 7. Scan fitting results. From left to right: the original scans, our fitting results, fitting results from Nonrigid ICP [48] and Multilinear Wavelets [49].

vectors using encoder E , then condition all those identity
vectors with neutral blendshape coefficients and generate
reconstructions by decoder Gf . We compute the standard
deviations of the generated displacement maps and choose
the mean and median of the standard deviations of different
identities as disentanglement metrics. The lower the metric
values are, the more consistent identity codes can be en-
coded from different expressions, which means the model is
more disentangled.

From Table 2, we can see that with the disentangle
loss Ldis, our method achieves lower mean and median
std values, indicating better disentanglement results. The
benefit can also be noticed in the qualitative results. Figure 6
shows the visual results of expression disentanglement. We
can see that without the disentangle loss, the reconstructed
neutral expressions contain some details related to the input
expressions (Figure 6(b)), which are not shown in the results
with the disentangle loss (Figure 6(c)).

5.3.2 Age Evaluation

Since we do not have ground truth data of the same identity
at different ages, we cannot evaluate the same disentangle-
ment metric on identity and age. Therefore, we showcase its
effectiveness via qualitative study. A model with better age
disentanglement should correctly adjust age-related details
to be compatible with the modified age, while keeping
identity-related details fixed.

Figure 8 shows the visual results of age disentanglement.
We can see that with the disentangle loss, the reconstructed
young and old faces have more reasonable age-related de-
tails. For the results without the disentangle loss, the age-
related details in the red rectangles fail to change with
age. Note that the large-scale 3DMM we used cannot be
controlled by age, therefore some age-related large-scale
shape do not change according to age. We consider this as a
limitation of the current large-scale 3DMM, and future work
can extend our method by change the age of large-scale and
details in the same time. We also show that our age changes
are smooth and continuous, as we can produce smooth age
interpolation in the accompanying video.

Input

(a) W/O Disentanglement Loss (b) W/ Disentanglement Loss

(b)

(a)

(b)

(a)

OldMiddle ageYoung

Fig. 8. Evaluation of our age disentanglement loss. We fix the input
faces’ identity and expression codes and change their age codes. Note
that results generated by the model with disentangle loss are more
consistent with target ages. Age-related details that are incorrectly fixed
in the baseline are shown in red boxes.

5.4 Applications

5.4.1 Scan Fitting

We demonstrate one usage of our model to fit facial scans
as shown in Figure 7. Here we do not show preprocessed
scans in the FaceScape dataset, but use scans from [51] to
showcase the ability to establish vertex correspondences us-
ing our fitting method. We also compare with two previous
works Nonrigid ICP [48] and Multilinear Wavelets [49], both
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Fig. 9. Comparison on image reconstruction with DECA and FaceScape.

designed specifically for scan fitting. We use their open-
source implementation for comparison, and initialize the
Nonrigid ICP from the surface fitted by a 3DMM.

Nonrigid ICP is a popular method for facial surface
registration. As it does not represent the face by a para-
metric model, it has high degrees of freedom and can fit
the details on the visible surface as expected. However, it
cannot edit the resulted face as it doesn’t obtain the latent
representation of the face. Our method can achieve results
on par with Nonrigid ICP in the visible region. We can
accurately reconstruct various facial wrinkles like crow’s
feet and forehead wrinkles, which can greatly enhance the
realism compared to a large-scale face. Furthermore, given
a challenging facial scan with only half visible constraint
(bottom row), our model can also recover full details which
accurately represent the observed parts and are plausible
on the missing parts. Please notice the reconstructed details
in the missing region match the age and expression of the
inputs. Multilinear Wavelets is a parametric model-based
method, thus can edit the expression of fitted results. How-
ever, wrinkle-level details are missing in its results, probably
because it lacks the representation ability for facial details.

5.4.2 Image Fitting

Given an RGB face image, we can reconstruct facial de-
tails from the image via model fitting using the shading
constraints in the image. We compare the reconstruction
results with recent riggable detail reconstruction methods,

FaceScape [38] and DECA [40]. We use their official imple-
mentation for comparison. Figure 9 shows the reconstruc-
tion results on in-the-wild images from [52].

We can see that our method has a wide coverage of facial
details, and effectively matches the wrinkle shading in the
input images. DECA generates plausible details, but they
do not match the input image as well as ours, and generate
less identity-specific details. We can generate more accurate
details than FaceScape (row 1 left, row 2 left), and are more
robust than FaceScape in handling occlusions like hair (row
3 left), because we model the possibility of wrinkle occur-
rence on each position in our model prior, while FaceScape
mainly relies on local image patches. From the results, we
can see our method both accurately reconstructs wrinkle de-
tails and are robust to various in-the-wild scenarios like hard
shadows and occlusions, outperforming previous methods.
Video tracking is similar to image fitting except we add
a temporal smoothness term in the latent space. Figure 10
shows several frames of our tracking results. We also show
tracking results of videos in our accompanying video.

5.4.3 Animation
Since our model also uses blendshape coefficients to manip-
ulate facial details with expressions, we can perform face
motion transfer using a sequence of blendshape coefficients
and generate detailed face animation. The blendshape co-
efficients are extracted using our tracking system based on
[16]. The results are shown in our accompanying video as
well as in Figure 11. We can see that besides the static details
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(a) (b) (a) (b)

Fig. 10. Tracking results. For each sample we show the input video frame
(a) and our tracking result (b).

Fig. 11. Frames of blendshape animation of different identities. We show
the reference images on the left, and for each column, we show detailed
faces of the same identity performing the reference expressions. Re-
gions where identity-specific dynamic wrinkles exist are marked by red
rectangles.

in the neutral expressions, the user-specific dynamic details
can also be generated by our method.

5.4.4 Age Editing
By varying the age coefficients from young to old, we
can produce aging effects under different identities and
expressions. Both the original face and the aged one can
be driven to produce animations, and they show different
dynamic details because of the changed age, which are also
shown in the accompanying video and Figure 8.

5.4.5 Extrapolation
Our decoder Gf takes normalized ages in the range of [−1, 1]
and expression coefficients in the range of [0, 1] as input.
To explore the model’s behavior beyond the predefined

youngest oldest3×youngest 3×oldest

extrapolate extrapolateinterpolate

neutral brow raiser-3×brow raiser 3×brow raiser

Fig. 12. Extrapolate results of facial details on age editing (the first row)
and expression editing (the second row).

Fig. 13. Limitation of our method. The top row shows two image fitting
results. For the old performer on the left, the shadow on the image leads
to a wrong winkle in the result, while for the young performer on the
right, the shadow does not lead to a winkle. This is due to different prior
subspaces for different ages. The bottom row shows two scan fitting
results. For the left result, the mole is correctly reconstructed, while for
the right result, the two moles are not reconstructed. This is related to
whether the training data contains moles on the specific positions.

range, we visualize its extrapolation behavior in Figure
12. We vary the age value in the range of [−3, 3] and
scale the original blendshape coefficients in the range of
[−3, 3] respectively. Please note that to focus on details in
expression extrapolation, we do not extrapolate large-scale
blendshapes but set them to the nearest valid value (neutral
or extreme expression), because out-of-range blendshapes
will cause artifacts that interfere detail visualization.

We find that the detail model will exaggerate features
related to aging or expression when the inputs exceed the
predefined largest value. However, when we input values
smaller than the lower bound, the results stay roughly the
same with the youngest face or the neutral expression. The
results finally degrade when we extrapolate far beyond the
range.

6 LIMITATIONS

As a parametric model, we prefer to use fewer parameters to
make the model compact, efficient, and easy to use in fitting,
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manipulation, and other applications. However, pore-level
details are inherent in high dimensions. So in this paper,
since we aim to build a compact model of wrinkle-level
details with 256 dimensions, we cannot model pore-level
details well.

Our fitting robustness is affected by the ages of the per-
formers. For the old performers, the prior subspace learned
by our model will lead the results to generate more age-
related details. As shown in the top row of Figure 13, the
shadow boundary in the image is reconstructed as a wrinkle
as older people tend to have wrinkles in this region. On the
other hand, for a young performer, our model is robust to
the noise in this region as young people tend not to have
a wrinkle in this region. This also reflects that our method
correctly learns the prior knowledge related to ages.

Our model is data-driven, thus it cannot model rare
details. One example of this is mole reconstruction. For some
moles which are in the similar positions with some train-
ing data, we can reconstruct them. Otherwise, we cannot
(shown in the bottom row of Figure 13).

7 CONCLUSION

We propose a VAE-based model to represent facial details
and control them with semantic attributes. Our technique
by design disentangles fine-scale facial details from large-
scale face shapes, which has the benefit of being compatible
with the widely-used large-scale face models. By propos-
ing our Semantically Disentangled Variational Autoencoder
(SDVAE), we further disentangle identity, expression, and
age for facial details. We propose an adversarial disentangle
loss to achieve the aforementioned detail disentanglement.
Quantitative and qualitative comparisons demonstrate the
better representation power of our method compared to
alternative parametric models. We achieve more expressive
detail reconstruction compared to state-of-the-art riggable
image reconstruction methods. Various applications like
image and video fitting, full and partial scan fitting, age
manipulation, and expression animation are performed to
demonstrate the power of our technique.
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